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Using potential theoretic methods we study the asymptotic distribution of zeros
and critical points of Sobolev orthogonal polynomials, i.e., polynomials orthogonal
with respect to an inner product involving derivatives. Under general assumptions
it is shown that the critical points have a canonical asymptotic limit distribution
supported on the real line. In certain cases the zeros themselves have the same
asymptotic limit distribution, while in other cases we can only ascertain that the
support of a limit distribution lies within a specified set in the complex plane. One
of our tools, which is of independent interest, is a new result on zero distributions
of asymptotically extremal polynomials. Our results are illustrated by numerical
computations for the case of two disjoint intervals. We also describe the numerical
methods that were used. � 1997 Academic Press

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

We consider a Sobolev inner product

( f, g) =| f (t) g(t) d+0(t)+| f $(t) g$(t) d+1(t), (1.1)

where +0 and +1 are compactly supported positive measures on the real line
with finite total mass. We put

70 :=supp(+0), 71 :=supp(+1), 7 :=70 _ 71 . (1.2)

If, as we assume, +0 has infinite support, there exists a unique sequence of
monic polynomials ?n , deg ?n=n, which is orthogonal with respect to the
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inner product (1.1). These Sobolev orthogonal polynomials have properties
that clearly distinguish them from ordinary orthogonal polynomials, most
notably by the fact that some or many of the zeros of ?n may be outside
the convex hull of 7, or even off the real line; cf. [1, 9]. In recent papers
many results on zeros of special classes of Sobolev orthogonal polynomials
were obtained. We refer to the surveys [8, 10].

Asymptotic properties of Sobolev orthogonal polynomials were obtained
by Lo� pez, Marcella� n, and Van Assche [7]. These authors considered a
general class of inner products, including inner products (1.1) with discrete
measure +1 .

In the present paper, we study the asymptotic behavior of zeros and
critical points of orthogonal polynomials in a continuous Sobolev space,
i.e., when both +0 and +1 are nondiscrete measures. Our results will be
stated in terms of weak* convergence of measures. We associate with a
polynomial P of exact degree n its normalized zero distribution,

&(P) :=
1
n

:
n

j=1

$zj , (1.3)

where z1 , ..., zn are the zeros of P counted according to their multiplicities.
A sequence of polynomials [Pn]�

n=1 , deg Pn=n, is said to have asymptotic
zero distribution + if + is a probability measure on C� and

lim
n � � | f d&(Pn)=| f d+ (1.4)

for every continuous function f on C� . That is, their normalized zero dis-
tributions converge in the weak* sense to +.

Asymptotic zero distributions for orthogonal polynomials with respect to
an ordinary inner product

( f, g) =| f (t) g(t) d+(t), 7 :=supp(+)/R, (1.5)

have been studied by many authors. The most comprehensive account can
be found in the monograph of Stahl and Totik [13]. They introduce a
class Reg of regular measures. One of their results is that for + # Reg, the
orthogonal polynomials pn for the inner product (1.5) have regular
asymptotic zero distribution. This means that

lim
n � �

&( pn)=|7 ,
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where |7 is the equilibrium measure of 7; see [13, Theorem 3.6.1]. In case
7=supp(+) is regular with respect to the Dirichlet problem in C"7, the
measure + belongs to Reg if and only if

lim
n � � \ &Pn &7

&Pn&L2(+)+
1�n

=1 (1.6)

for every sequence of polynomials [Pn]�
n=1 , deg Pn�n, Pn #3 0. Here and

in the following we use & }&7 to denote the supremum norm on 7.
Regularity of a measure indicates that it is sufficiently dense on its support.
For example, it is enough that + has a density which is positive almost
everywhere on 7. See [13, Chap. 4] for this and other criteria for
regularity of +.

Motivated by these facts, we make the following assumptions on the
measures +0 and +1 in (1.1). Recall that 7j=supp(+j), j=0, 1.

Assumption A. For j=0, 1, the set 7j is compact and regular for the
Dirichlet problem in C� "7j .

Assumption B. The measures +0 and +1 belong to the class Reg.

Our first result concerns the asymptotic zero distribution for the
derivatives ?$n of the Sobolev orthogonal polynomials.

Theorem 1. Let +0 and +1 be measures on the real line satisfying
Assumptions A and B. Let [?n] be the sequence of monic orthogonal poly-
nomials for the inner product (1.1). Then

lim
n � �

&(?$n)=|7 ,

where 7=supp(+0) _ supp(+1) and |7 is the equilibrium measure of 7.

Thus the sequence of derivatives [?$n] has regular asymptotic zero dis-
tribution. Note, however, that this does not imply that the zeros of ?$n are
all real. In fact, we do not even know if the zeros remain uniformly
bounded. In our computations we found in all cases that the zeros of ?$n are
real, see Section 2. While we have no reason to believe that this is true in
general, we feel confident about the following conjecture.

Conjecture 1. Under the same conditions as in Theorem 1, let U be an
arbitrary open set containing the convex hull of 7. Then there is an n0 such
that for every n�n0 , all zeros of ?$n are in U.
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To discuss the zeros of the Sobolev orthogonal polynomials ?n them-
selves, we need to introduce some more notation. Set

0 :=C� "7,

and let g0(z ; �) be the Green function for 0 with pole at infinity; see
[12, 13]. For r>0, we denote by Vr the union of those components of
[z # C : g0(z ; �)<r] having empty intersection with 70 , and we put

V := .
r>0

Vr .

Finally, we put

K :=�V _ (7"V ).

Theorem 2. Let +0 and +1 be measures on the real line satisfying
Assumptions A and B. Let [?n] be the sequence of monic orthogonal poly-
nomials for the inner product (1.1). Let & be a weak* limit of a subsequence
of [&(?n)]. Then

(a) supp(&)/V� _ 7,

(b) the balayage of & onto K is equal to the balayage of |7 onto K.

See [13] for the notion of balayage of a measure onto a compact set.
The information on the zeros of ?n we get from Theorem 2 is less precise

than the information on the critical points from Theorem 1. In particular,
it does not follow that the full sequence [&(?n)] converges. However, in
some cases we can say more.

Corollary 3. Under the same conditions as in Theorem 2, let & be a
weak* limit of a subsequence of [&(?n)]. If K=7 (e.g., if 71 �70), then
&=|7 . In this case the full sequence [&(?n)] converges to |7 .

Corollary 3 follows immediately from Theorem 2. In our numerical
examples, see Sections 2.3�2.4, we found that for n up to 50, part of the
zeros of ?n are still pretty far outside K. But we conjecture that they do not
accumulate outside of V� and the convex hull of 7.

Conjecture 2. Under the same conditions as in Theorem 2, let U be an
arbitrary open set containing V� and the convex hull of 7. Then there is an
n0 such that for every n�n0 , all zeros of ?n are in U.

Conjecture 2 actually follows from Conjecture 1.
The rest of this paper is organized as follows. We first present numerical

results on zeros and critical points for several special cases, where 7 con-
sists of two disjoint intervals. The numerical methods we used are discussed
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in Section 6. The proofs of the theorems are in Sections 3�5. They depend
essentially on results on zero distributions of asymptotically minimal poly-
nomials obtained by Blatt, Saff, and Simkani [2] and Mhaskar and Saff
[11]. For the proof of Theorem 2 we need an extension of these results,
which will be presented as Theorem 5 in Section 3. In Section 4 we give the
proof of Theorem 1 and in Section 5 the proof of Theorem 2.

2. TWO DISJOINT INTERVALS: NUMERICAL RESULTS

In this section we present numerical calculations to illustrate our results.
The methods used are described in Section 6.

We consider the case where 7 consists of two disjoint intervals of equal
length. We choose

7=[&1, &1
2] _ [ 1

2 , 1].

With *+ the Lebesgue measure restricted to [ 1
2 , 1] and *& the Lebesgue

measure restricted to [&1, &1
2], we distinguish the following four cases:

Case A: +0=+1=*++*&;

Case B: +0=*++*& , +1=*& ;

Case C: +0=*+ , +1=*++*& ;

Case D: +0=*+ , +1=*&.

In all four cases, we know from Theorem 1 that the asymptotic zero dis-
tribution for the derivatives is equal to |7 . In Cases A and B we have
71 �70 . Thus, it follows from Corollary 3 that in these two cases the
asymptotic zero distribution for the Sobolev orthogonal polynomials is
also equal to |7 . This is confirmed by our calculations.

2.1. Case A: +0=+1=*++*& (Table I )

In our calculations for n=1(1)25(5)50 we found complex zeros of ?n

only for n=5, 7, and 9. All zeros of ?$n were found to be simple, real, and
in the interval (&1, 1).

2.2. Case B: +0=*++*& , +1=*& (Table II )

Again, most of the zeros are real. Only for n=4 and 6 did we find com-
plex zeros of ?n . The zeros of ?$n are all simple, real, and in (&1, 1).
(Calculations for the same n as in Case A.)

The situation is different in Cases C and D. In these cases the set K of
Theorem 2 may be described as follows. The Green function g0(z ; �) of
0=C� "7 has one level set [z : g0(z ; �)=rc] consisting of a figure eight.
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TABLE I

Zeros of ?n and ?$n , n=5, 10, in Case A

Zeros of ?n Zeros of ?$n

n=5 &0.93646854 & 0.20876772i &0.88534979

&0.93646854 + 0.20876772i &0.46499783

0.0 0.46499783

0.93646854 & 0.20876772i 0.88534979

0.93646854 + 0.20876772i

n=10 &1.00052723 &0.97497028

&0.93567713 &0.87345927

&0.80269592 &0.71474572

&0.62612019 &0.55444777

&0.50181795 0.0

0.50181795 0.55444777

0.62612019 0.71474572

0.80269592 0.87345927

0.93567713 0.97497028

1.00052723

TABLE II

Zeros of ?n and ?$n , n=5, 10, in Case B

Zeros of ?n Zeros of ?$n

n=5 &1.01982013 &0.91709404

&0.74396812 &0.64370369

&0.55435292 0.14139821

0.61214903 0.78137665

0.90846355

n=10 &1.00290062 &0.97911875

&0.93891943 &0.89422735

&0.84280403 &0.75923516

&0.66396367 &0.61066220

&0.55481204 &0.51231989

&0.48324766 0.16014304

0.55639877 0.62971341

0.71942191 0.80459125

0.87676555 0.93865007

0.97576614
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For symmetry reasons, this is the level set containing 0. The set K consists
of two parts. It is the union of [ 1

2 , 1] with that part of the figure eight that
encircles [&1, &1

2].

2.3. Case C: +0=*+ , +1=*++*& (Table III )

In our calculations for n=1(1)25(5)50 all zeros of ?$n were found to be
simple, real, and in (&1, 1). All zeros of ?n are real only for n=1, 2, 3, 4,
6, 8, and 10. All complex zeros have a negative real part and they are
encircling [&1, &1

2]. Furthermore, we noted some peculiarities in the
behavior of the complex zeros. For odd n, the complex zeros are outside

TABLE III

Zeros of ?n and ?$n , n=5, 10, 15, in Case C

Zeros of ?n Zeros of ?$n

n=5 &1.13970225 & 0.44661459i &0.90932823
&1.13970225 + 0.44661459i &0.62403037

0.50779290 0.62478703
0.76816794 0.90887919
1.00382819

n=10 &0.98774277 &0.97498555
&0.95967689 &0.87349586
&0.77454092 &0.71478191
&0.65462781 &0.55436421
&0.48961896 0.00056691

0.50181827 0.55445253
0.62612626 0.71475358
0.80270124 0.87346371
0.93567933 0.97497123
1.00052715

n=15 &1.20729028 &0.99008732
&1.11842498 & 0.23762201i &0.94869995
&1.11842498 + 0.23762201i &0.87812479
&0.86567461 & 0.41291713i &0.78542939
&0.86567461 + 0.41291713i &0.68199701
&0.48045299 & 0.45544118i &0.58497964
&0.48045299 + 0.45544118i &0.51762420

0.50000295 0.51762967
0.54387032 0.58499199
0.63049097 0.68200314
0.73428763 0.78542581
0.83481287 0.87811753
0.91801959 0.94869496
0.97492010 0.99008612
0.99999844
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Fig. 1. Plot of the zeros of ?n , n=5(5)50, in Case C.

the set K, while for even n, they are initially inside, but eventually some
cross over to the outside. It seems likely that for odd n, the zeros tend to
K from the outside but the convergence is very slow. For even n, there
might be a different limit distribution, although it is conceivable that also
for even n, the zeros accumulate on K. It is also remarkable that the zeros

Fig. 2. Plot of the zeros of ?n , n=5(5)50, in Case D.
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of ?$n are very close to being symmetric around 0. We have no explanations
for these phenomena.

Figure 1 depicts the zeros of ?n , n=5(5)50, along with that part of K
that encircles [&1, &1

2].

2.4. Case D: +0=*+ , +1=*& (Table IV )

We found complex zeros of ?n for all n, except n=1, 2, and 3. Again, all
the zeros of ?$n are simple, real, and in (&1, 1).

In contrast to Case C, we found no zeros of ?n inside the curve K (except
for n=3). This is illustrated in Fig. 2 with the plots of the zeros of ?n ,
n=5(5)50. Note that the zeros are pretty far from K.

TABLE IV

Zeros of ?n and ?$n , n=5, 10, 15, in Case D

Zeros of ?n Zeros of ?$n

n=5 &1.40237979 &0.91931357
&0.67193855 & 0.70835815i &0.64605904
&0.67193855 + 0.70835815i &0.18436141

0.62935932 0.78712860
0.91364079

n=10 &1.29703537 &0.98088476
&1.10126374 & 0.39294199i &0.90316848
&1.10126374 + 0.39294199i &0.77960092
&0.57893971 & 0.56595190i &0.63989830
&0.57893971 + 0.56595190i &0.53049964

0.51468739 0.55298588
0.60589851 0.68147141
0.75300437 0.83024743
0.89081502 0.94619968
0.97842844

n=15 &1.24663987 & 0.13488685i &0.99138203
&1.24663987 + 0.13488685i &0.95536746
&1.07914072 & 0.37346724i &0.89378004
&1.07914072 + 0.37346724i &0.81229432
&0.77108509 & 0.51962021i &0.71962499
&0.77108509 + 0.51962021i &0.62805945
&0.36124445 & 0.50773392i &0.55324965
&0.36124445 + 0.50773392i &0.50975247

0.51791298 0.54446702
0.58620377 0.63199538
0.68402014 0.73630329
0.78755144 0.83660513
0.87969723 0.91913536
0.94947423 0.97530045
0.99024926
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2.5. Another Choice for *+ and *&

We also experimented with *+ the measure |t| (t2& 1
4)&1�2 (1&t2)&1�2

restricted to [ 1
2, 1] and *& the same measure restricted to [&1, &1

2]. The
results, on the whole, are very similar to those for the Lebesgue measure.
The differences noted were that complex zeros of ?n occur also for n=11
and 13 in Case A, and for n=8 in Case B. In Case C, all zeros of ?n are
real only for n=1, 2, 3, 4, 6, and 8.

3. AN AUXILIARY RESULT ON ASYMPTOTICALLY
MINIMAL POLYNOMIALS

A major tool in the proof of Theorem 1 is a well-known result on zero
distributions of polynomials, which we state below for the case of a set
E/R. Here and in the following, cap(E) denotes the logarithmic capacity
of E; see, e.g., [12, 13].

Lemma 4. Let E/R be compact with cap(E)>0 and let [ pn] be a
sequence of monic polynomials, deg pn=n, such that

lim sup
n � �

&pn&1�n
E �cap(E). (3.1)

Then

lim
n � �

&( pn)=|E . (3.2)

Proof. See the paper of Blatt, Saff, and Simkani [2]. K

Monic polynomials satisfying (3.1) are called asymptotically minimal
polynomials, since every monic polynomial pn of degree n satisfies

&pn&1�n
E �cap(E).

Hence, if (3.1) holds, we have in fact equality.
A weighted analogue of this theorem was obtained by Mhaskar and Saff

[11]. To prove Theorem 2, we will need a slightly stronger result, which
may be of independent interest. To state it, we recall the situation of [11].
Assume E/C is a closed set. A function w : E � [0, �) is an admissible
weight if

(a) w is upper semicontinuous;

(b) the set [z # E : w(z)>0] has positive capacity;

(c) if E is unbounded, then |z| w(z) � 0 as |z| � �, z # E.
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Associated with an admissible weight w is a unique positive unit measure
+w and a unique constant Fw such that

U+w(z)&log w(z)=Fw q.e. on supp(+w),

U+w(z)&log w(z)�Fw q.e. on E. (3.3)

Here, U+ denotes the logarithmic potential of the measure +,

U+(z) :=| log
1

|z&t|
d+(t),

and q.e. means quasi-everywhere, that is, except for a set of zero capacity.
In the following theorem we use Sw to denote the support of +w , Pc(Sw)

denotes the polynomial convex hull of Sw , Dw=C� "Pc(Sw) denotes the
unbounded component of C� "Sw , and �Dw denotes the boundary of Dw

(also known as the outer boundary of Sw).

Theorem 5. Let w be an admissible weight on the closed set E/C. Let
[ pn]�

n=1 be a sequence of monic polynomials, deg pn=n, such that for q.e.
z # �Dw ,

lim sup
n � �

[w(z) | pn(z)| 1�n]�exp(&Fw). (3.4)

Then for every closed A/Dw ,

lim
n � �

&( pn)(A)=0. (3.5)

Furthermore, if & is the weak* limit of a subsequence of [&( pn)], then
supp(&*)/Pc(Sw) and the balayage of &* onto �Dw is equal to the balayage
of +w onto �Dw .

In [11] the same result was obtained from the stronger assumption

lim sup
n � �

&wnpn&1�n
�Dw

�exp(&Fw).

Proof. In terms of potentials, the relation (3.4) is

Fw+log w(z)�lim inf
n � �

U&( pn)(z), q.e. z # �Dw ,

and in view of (3.3) this implies

U+w(z)�lim inf
n � �

U&( pn)(z), q.e. z # �Dw . (3.6)
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Let &n be the balayage of &( pn) onto Pc(Sw). Then

U&n(z)=U&( pn)(z)+cn , q.e. z # Pc(Sw), (3.7)

with a constant cn given by (see [13, Appendix VII])

cn=| gDw(z ; �) d&( pn)(z)�0. (3.8)

Let & be the weak* limit of a subsequence of [&n], say &n � & as
n � �, n # 4, where 4 is a subsequence of the natural numbers. Then
supp(&)/Pc(Sw), and by the lower envelope theorem [13, Appendix III]

U&(z)= lim inf
n � �, n # 4

U&n(z), q.e. z # C.

Combining this with (3.7), (3.8), and (3.6), we find for q.e. z # �Dw :

U&(z)= lim inf
n � �, n # 4

U&n(z)= lim inf
n � �, n # 4

[U&( pn)(z)+cn]

� lim inf
n � �, n # 4

U &( pn)(z)�U+w(z). (3.9)

Since U&&U +w is harmonic in Dw and zero at infinity, the minimum
principle and (3.9) give that U&(z)=U+w(z) for z # Dw , and therefore,

U&(z)=U+w(z), q.e. z # �Dw .

Consequently, equality holds in every inequality in (3.9) for q.e. z # �Dw .
Then it follows that lim infn # 4 cn=0. Since this holds for every sub-
sequence 4/N for which [&n]n # 4 converges, we obtain

lim
n � �

cn=0. (3.10)

Since for a closed set A/Dw there exists a constant C>0 such that
gDw(z ; �)�C for z # A, it follows from (3.8) and (3.10) that

lim
n � �

&( pn)(A)=0.

This proves (3.5).
To prove the rest of the theorem, let &* be the weak* limit of a sub-

sequence of [&( pn)]; say 4 is a subsequence of the natural numbers such
that &( pn) � &* as n � �, n # 4. Having (3.5), we see that &* is supported
on Pc(Sw). Define

A := [z # Dw : dist(z, Sw)�1].
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Let `j, n , j=1, ..., n, be the zeros of pn counted according to multiplicity,
and put

rn(z) := `
`j, n # A

(z&`j, n), qn(z) :=
pn(z)
rn(z)

= `
`j, n � A

(z&`j, n).

Then, because of (3.5),

deg qn=n(1&$n), $n � 0, (3.11)

and the sequence [&(qn)]n # 4 converges to &* in the weak* sense. Since the
measures &(qn) are supported on a fixed compact set, the lower envelope
theorem can be applied. It gives

U&*(z)= lim inf
n � �, n # 4

U &(qn)(z), q.e. z # C. (3.12)

Next, since rn(z)�1 for z # Sw , we have for z # Sw

U&( pn)(z)=(1&$n) U&(qn)(z)&$n log |rn(z)|�(1&$n) U &(qn)(z);

hence, by (3.11), (3.12),

lim inf
n � �, n # 4

U&( pn)(z)� lim inf
n � �, n # 4

[(1&$n) U &(qn)(z)]

=U&*(z), q.e. z # Sw .

Combining this with (3.6), we obtain

U+w(z)�U&*(z), q.e. z # �Dw .

In the same way as before, cf. (3.9), this implies equality for q.e. z # �Dw .
Now the equality of the balayages of &* and +w onto �Dw follows from the
uniqueness of balayage. This completes the proof of Theorem 5. K

4. PROOF OF THEOREM 1

We start with a lemma which will also be useful for the proof of
Theorem 2.

Lemma 6. Let +0 and +1 be measures satisfying Assumptions A and B.
Let ?n be the sequence of monic orthogonal polynomials with respect to (1.1).
Then we have

lim sup
n � �

&?n&1�n
70

�cap(7) (4.1)
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and

lim sup
n � �

&?$n&1�n
7 �cap(7). (4.2)

Proof. Let & }&H denote the norm associated with the inner product (1.1),

& f &2
H=& f &2

L2(+0)+& f $&2
L2(+1) .

We first prove that

lim sup
n � �

&?n&1�n
H �cap(7). (4.3)

Let Tn be the monic Chebyshev polynomial of degree n for 7. That is,
&Tn&7�&Pn &7 for all monic polynomials Pn of degree n. It is well known
that

lim
n � �

&Tn&1�n
7 =cap(7). (4.4)

From the regularity of 71 (see Assumption A) it is easy to see (using
the continuity of the Green function, the Bernstein�Walsh lemma and
Cauchy's formula) that the Markov constants for 71 have subexponential
growth. This means that there exist constants Mn with limn � � M 1�n

n =1
such that

&P$n&71
�Mn &Pn&71

, deg Pn�n. (4.5)

Then, for certain constants c1 , c2 ,

&Tn&2
H =&Tn&2

L2(+0)+&T $n&2
L2(+1) �c1 &Tn&2

70
+c2&T $n&2

71

�c1 &Tn&2
70

+c2M 2
n &Tn&2

71
�(c1+c2M 2

n) &Tn &2
7 . (4.6)

Using (4.4), (4.6), and M 1�n
n � 1, we find

lim sup
n � �

&Tn &1�n
H �cap(7).

Since ?n minimizes the Sobolev norm among all monic polynomials of
degree n, we have &?n&H�&Tn&H for all n, and (4.3) follows.

Now, because +0 # Reg, we have by (1.6),

lim
n � � \ &?n&70

&?n&L2(+0)+
1�n

=1. (4.7)

Since &?n&L2(+0)�&?n&H , we get (4.1) from (4.3) and (4.7).
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Next, using the regularity of 70 , we find that the Markov constants for
70 grow subexponentially. Thus,

lim sup
n � � \&?$n&70

&?n &70
+

1�n

�1.

Hence, from (4.1),

lim sup
n � �

&?$n&1�n
70

�lim sup
n � �

&?n&1�n
70

�cap(7). (4.8)

Further, we get from +1 # Reg and (1.6)

lim sup
n � � \ &?$n&71

&?$n &L2(+1)+
1�n

�1. (4.9)

Since &?$n&L2(+1)�&?n &H , (4.3) and (4.9) give

lim sup
n � �

&?$n&1�n
71

�cap(7). (4.10)

Combining (4.8) and (4.10), we obtain (4.2). K

Remark. Actually, we have equality in (4.1) and (4.2), and we can
replace the lim sup's by lim's, but this will not be used in the proof. It is
straightforward to see that equality holds in (4.2); cf. the discussion after
Lemma 4. Since 70 has positive capacity, it then also follows that

lim
n � �

&?$n&1�n
70

=cap(7).

Using (4.8), we obtain equality in (4.1) as well.

Proof of Theorem 1. The theorem follows immediately from Lemma 4
and (4.2). K

5. PROOF OF THEOREM 2

Recall the definitions of 0, V, Vr , and K from Section 1. The significance
of the set V is described in the following lemma.

Lemma 7. Let z # C. Then z � V if and only if for every r>g0(z ; �),
there is a differentiable path # : [0, 1] � C such that

(a) #(0) # 70 ,

(b) #(1)=z,

(c) g0(#(t) ; �)<r for all t # [0, 1].
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Proof. If z # V, then z # Vr for some r>g0(z ; �). From the definition
of Vr it follows that the connected component of [` : g0(` ; �)<r] con-
taining z does not contain a point of 70 . Hence there is no path satisfying
(a), (b), and (c).

On the other hand, if z � V and r>g0(z ; �), then z � Vr . Thus the
connected component of [` : g0(` ; �)<r] does contain a point of 7.
Consequently, there is a path satisfying (a), (b), and (c). K

This allows us to estimate |?n(z)| for z outside V.

Lemma 8. For every z # C"V,

lim sup
n � �

|?n(z)| 1�n�cap(7) e g0(z ; �). (5.1)

Proof. Let z # C"V and r>g0(z ; �). By Lemma 7 there is a differen-
tiable path # : [0, 1] � C satisfying (a), (b), and (c) of Lemma 7. By the
Bernstein�Walsh lemma we have

|?$n(`)|�&?$n&7 eng0(` ; �), ` # C.

Using this and the properties of #, we find

|?n(z)|�|?n(#(0))|+ } |#
?$n(`) d` }�&?n&70

+L(#) &?$n &7 enr,

where L(#) denotes the length of #. Then, by (4.1) and (4.2),

lim sup
n � �

|?n(z)| 1�n�cap(7) er.

Since r>g0(z ; �) can be chosen arbitrarily close to g0(z ; �), (5.1)
follows. K

Proof of Theorem 2. Define

w(z) :=exp(& g0(z ; �)), z # K.

Let |̂ be the balayage of |7 onto K. Since 7/Pc(K), we have

U|̂(z)=U|7 (z), z # K.

We also have

U|7 (z)+ g0(z ; �)=&log cap(7), z # C,
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so that

U|̂(z)&log w(z)=&log cap(7), z # K.

Thus, by (3.3),

+w=|̂, Fw=&log cap(7).

Because of (5.1) we can apply Theorem 5, and Theorem 2 follows. K

6. COMPUTATIONAL METHODS

There are two general procedures for calculating Sobolev orthogonal
polynomials: the modified Chebyshev algorithm [6, Section 2] and the
Stieltjes algorithm [6, Section 4]. Both generate the coefficients ;k

j in the
recursion

?k+1(t)=t?k(t)& :
k

j=0

;k
j ?k& j (t), k=0, 1, 2, ..., (6.1)

for the respective polynomials ?k . Being interested in the polynomials up
to (and including) degree n, we need the coefficients [;k

j ]0� j�k for
k=0, 1, ..., n&1.

6.1. Modified Chebyshev Algorithm

This computes the desired coefficients [;k
j ] from ``modified moments''

& (0)
j =| pj (t) d+0(t), 0� j�2n&1,

(6.2)

& (1)
j =| pj (t) d+1(t), 0� j�2n&2 (if n�2),

where [ pj] is a given set of polynomials, with pj monic of degree j.
``Ordinary moments'' correspond to pj (t)=t j, but are numerically unsatis-
factory. A better choice are modified moments corresponding to a set [ pj]
of orthogonal polynomials, pj ( } )= pj ( } ; *), relative to some suitable
measure * on R. These are known to satisfy a three-term recurrence relation,

pk+1(t)=(t&ak) pk(t)&bkpk&1(t), k=0, 1, 2, ...,
(6.3)

p0(t)=1, p&1(t)=0,
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with coefficients ak=ak(*), bk=bk(*) depending on *. We need the coef-
ficients [aj], [bj] for 0� j�2n&2.

In the context of the Sobolev orthogonal polynomials of Section 2,
a natural choice of *, and one that was found to work well, is *=*++*& .
By the orthogonality of the pj we then have

|
&1�2

&1
pj (t) d*&(t)+|

1

1�2
pj (t) d*+(t)=0, j�1,

so that

|
&1�2

&1
pj (t) d*&(t)=&|

1

1�2
pj (t) d*+(t). (6.4)

Since, by symmetry, pj (&t)=(&1) j pj (t), the change of variables t=&{
in (6.4) yields

|
1

1�2
pj (t) d*+(t)=0 if j is even �2. (6.5)

Let

Ij=|
1

1�2
pj (t) d*+(t), 0� j�2n&1, (6.6)

so that Ij=0 if j�2 is even. We then have, in Case A,

& (0)
j =& (1)

j =2$j, 0I0 , j=0, 1, 2, ..., (6.7)

where $j, 0 is the Kronecker delta. Similarly, in Case B,

I0 , j=0,

& (0)
j =2$j, 0I0 , & (1)

j ={&Ij , j odd, (6.8)

0, otherwise,

in Case C:

& (0)
j ={Ij ,

0,
j=0 or j odd,
otherwise, = , & (1)

j =2$j, 0I0 , (6.9)

and in Case D:

& (0)
j ={Ij ,

0,
j=0 or j odd,
otherwise, = , & (1)

0 =I0 , & (1)
j =&& (0)

j , j�1. (6.10)
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In Sections 2.1�2.4 we have that *+ and *& are Lebesgue measure sup-
ported on [ 1

2 , 1] and [&1, &1
2], respectively. Here, I0= 1

2. The coefficients
aj (*), bj (*) in (6.3) can be computed very accurately by known procedures
of Stieltjes or Lanczos type (cf. [3, Example 4.7; 5, Section 4.3]),
whereupon the integrals Ij in (6.6) can be computed (exactly) by (6.3) and
n-point Gauss�Legendre quadrature.

In Section 2.5, *+ and *& are equal to the measure |t| (t2& 1
4)&1�2_

(1&t2)&1�2 supported on [ 1
2 , 1] and [&1, &1

2], respectively. Here, I0= 1
2?.

The coefficients aj (*), bj (*) are known explicitly (cf. [4, Section 5.1]):

aj=0, 0� j�2n&2,

(6.11)

b0=?, b1= 5
8,

bj=
1

16 {9
1+3 j&2

1+3 j ,

1+3 j+1

1+3 j&1,

j even,

j odd, = , j=2, 3, ..., 2n&2.

The integrals Ij can no longer be computed exactly by numerical quad-
rature, but can be approximated by N-point Gauss�Chebyshev quadrature
with N sufficiently large. Indeed, if in

Ij=|
1

1�2
pj (t) t(t2& 1

4)&1�2 (1&t2)&1�2 dt

one makes the change of variables t2=(1+3s)�4, one gets

Ij=
1
2 |

1

0
pj (

1
2 - 1+3s) s&1�2(1&s)&1�2 ds,

or, transforming to the interval [&1, 1],

Ij=
1
2 |

1

&1
pj \ 1

2 - 2
- 5+3x+ (1&x2)&1�2 dx. (6.12)

Gauss�Chebyshev quadrature applied to the integral in (6.12) converges
fast.

6.2. Stieltjes Algorithm

Here the coefficients [;k
j ] are computed as Fourier�Sobolev coefficients

;k
j =

(t?k , ?k& j)H

&?k& j&2
H

, j=0, 1, ..., k, (6.13)
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where appropriate quadrature rules are used to compute the inner products
in (6.13). The coefficients ;k

j and polynomials ?m intervening in (6.13) are
computed simultaneously, the polynomials recursively by (6.1) using the
coefficients ;k

j already obtained. The choice of quadrature rules is par-
ticularly simple in the case of Lebesgue measures. Indeed, for k�n&1, the
integrands in (6.13) are polynomials of degree �2n&1, so that n-point
Gauss�Legendre rules on the respective intervals [&1, &1

2] and [ 1
2, 1] will

do the job. In the other example, one has to integrate numerically as
described above in connection with Ij .

6.3. Zeros

The zeros of ?n (including the complex ones, if any) can be conveniently
computed as eigenvalues of the Hessenberg matrix (cf. [6, Section 1])

;0
0

1
;1

1

;1
0

;2
2

;2
1

} } }
} } }

;n&2
n&2

;n&2
n&3

;n&1
n&1

;n&1
n&2

Bn=_ 0
} } }

1
} } }

;2
0

} } }
} } }
} } }

;n&2
n&4

} } }
;n&1

n&3

} } } & . (6.14)

0
0

0
0

0
0

} } }
} } }

;n&2
0

1
;n&1

1

;n&1
0

To compute all real zeros of ?n and ?$n , we scanned a suitable interval
(typically, [&1.6, 1.6]) for sign changes in ?n and ?$n and used the mid-
points of the smallest intervals found on which ?n (resp. ?$n) changes sign
as initial approximations to Newton's method.
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